

Man-Machine Integration Design and Analysis System: MIDAS

Barry Lakinsmith, Chief
Flight Control and Cockpit Integration Branch
Army/NASA Rotorcraft Division
Ames Research Center
Aeroflightdynamics Directorate
Aviation RDEC

www-midas.arc.nasa.gov

MIDAS Applications

NASA:

Advanced Air Traffic Technologies High Speed Research Program

Army:

AirWarrior

CH-47

Other:

Nuclear Power Plant

911

MIDAS Development Schedule

Why Redesign?

Implementation:

3 languages (C, C++, LISP)

500k lines of code

250k MIDAS

250k Jack® (U of Penn, Transom)

Legacy Code

User Interface

Why Redesign?

Functionality:

Difficult to use

Multiple Operators

Long Term Memory (LTM), working memory distinction

Reactive Action Packages (RAPs)

Multiple Resource Attention Model

Internal and External Vision

Audition

MIDAS Models

Perception:

Vision

Audition

Central Processing and Memory:

Attention

Working Memory

Long Term Memory

(Reactive Action Packages)

Process Models:

Workload

Situational Awareness

Perception: Vision

External

Peripheral = 160 degrees

Foveal = 2.5 degrees

Perception level f(dwell time, perceivability)

Perceivability f(visibility, size, distance, local contrast ratio)

Levels of Perception = detection, recognition, identification

Internal

Symbolic (check read)

Digital (exact value)

Text (character string)

Perception: Audition

Two Stages of Processing:

- 1) Detection
- 2) Comprehension

Content: verbal strings or signals
All or none processing -- partial processing
planned (semantic parsing)
Interrupts currently disrupts entire message

Army/NASA Rotorcraft Division

Central Processing and Memory: Attention

RDEC

Wickens, 1980 Multiple Resource Theory

RDEC

Contains:

- a) Current Context --Instantiated by sensory inputUsed to select RAPs from LTM
- b) Task Agenda --Contains currently active goals

Manages:

- a) New Events
- b) Goal Priorities
- c) Plan Execution

RDEC

Declarative Knowledge: Expertise, Facts

Procedural Knowledge:

Reactive Action Packages (Firby, 1989)

RAP Library

Army/NASA Rotorcraft Division

Reactive Action Packages: RAPs

RAPs are based on "sketchy" planning.

Current Context (working memory) --> LTM

Current Context (n) = RAP Context(n)

RAP Context(n) contains:

procedures for task execution
success criteria for completion

RAP Example

Key Difference Functionality

Old MIDAS:

Behavior is controlled by top-down goal decomposition. Specify conditionals in detail.

New Design:

Behavior is controlled by an interaction of topdown goals and environmentally driven contexts. Conditionals don't need to be specified, but emerge as behaviors.

Process Models

Workload (McCracken and Aldrich, 1988)

Visual, Auditory, Cognitive, Psychomotor 1-7 Scale based on Task Primitives

Situational Awareness (Shively, Brickner & Silbiger, 1997)

Situational Elements
Context-Sensitive Higher Order Nodes

Situational Awareness (Shively, Brickner & Silbiger)

RDEC

Ratio of *relevant* knowledge that the user has to the *relevant* information needed

operator know (context)

info needed (context)

Plans

Alpha Release - Sept 30, 1998

Beta Release - Dec 31, 1998

Boeing - Philadelphia

Israel Air Force

Validation - thru Dec 31, 1999

Blue Ribbon Panel - Spring, 1999

Empirical Validation -

Usability Testing -

Industry Release - Sept 30, 2000

Army/NASA Rotorcraft Division

Life Cycle Cost Leverage Defense Systems

Acquisition Community is Focused on Cost Reduction Throughout Life Cycle

SA Example

Run-time Display - GUI

Crewstation Editor - GUI

Run-time Display - Co-pilot - GUI

RDEC

Procedure Editor - GUI

Tab Format for GUI Editors

